Surge Pricing and Labor Supply in the Ride-Sourcing Market

1.Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL, 32611 2. School of Transportation Engineering, Tongji University, Shanghai, 201804, China

1. INTRODUCTION

This study proposes equilibrium models under different behavioral assumptions of labor supply in the ride-sourcing market and then investigates the performance of surge pricing.

Compared to static pricing, the platform and drivers in general enjoy higher revenue while customers may be made worse off during highly surged periods. A simple regulation scheme to reduce market power is discussed.

2. BASIC MODEL

1. A path between the hypothetic O-D pair corresponds to a work schedule for a ride-sourcing driver.

2. A driver is free to work, take a rest or end her daily schedule.

3. Demand is only generated on working links (A1). When a driver is taking a rest (A₃), she is not able to be matched to a customer. 4. Sample schedule: $O \rightarrow 1 \rightarrow 2 \rightarrow 2' \rightarrow 3' \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 7' \rightarrow D$

2.2 Definitional Equations

Hourly demand is a decreasing function of trip fare $\gamma_{h}F_{h}$ and average waiting time w_h^c :

$$Q_{b} = q_{b} \left(\gamma_{b} F_{b}, w_{b}^{c} \right), \ \forall b \in A_{1}$$

where γ_b is the surge multiplier during hour *b*; $w_b^c \propto 1/\sqrt{N_b^v/S}$ is induced from a closest vehicle matching process; N_b^v is the vacant vehicle hours.

From vehicle conservation during hour *b*

 $N_h^v + N_h^o = u_h, \ \forall b \in A_1$

where N_b^o is the occupied vehicle hours; u_b is the total vehicle hours.

Average hourly revenue (gross hourly wage rate):

$$R_{b} = \frac{\left(1 - \eta\right)\overline{F}_{b}Q_{b}}{u_{b}}, \ \forall b \in A_{1}$$

 $\eta = 0.3$ the commission ratio charged by the where $R_h'(u_h) < 0$; platform.

 $0 < \rho^m < 1$: Income-targeting $\rho^m = 0$: Neoclassical

2.3 Market equilibrium

Start

Class 1

Class 2

Class 3

Class 4

Liteng Zha¹, Yafeng Yin^{1,2}, Yuchuan Du²

Pay-off for drivers of class *m* in choosing path *p*:

$$U^{pm} = \begin{cases} \left(1+\rho^{m}\right)\left(R^{p}-I^{m}\right)-\overline{C}^{pm}+U_{0}, \ R^{pm} < I^{m} \\ \left(1-\rho^{m}\right)\left(R^{p}-I^{m}\right)-\overline{C}^{pm}+U_{0}, \ R^{pm} \ge I^{m} \end{cases}, \forall p \in P, \ m \in M \end{cases}$$

where I^m , U_0 are the pre-determined income target and reservation utility levels, respectively; \overline{C}^{pm} is the total cost associated with the chosen schedule; ρ^m controls the degree of loss aversion.

$$ig(U^m - U^{pm}ig) f^{pm} = 0, \ orall m \in M, \ p \in P$$

 $U^m - U^{pm} \ge 0, \ orall m \in M, \ p \in P$
 $\sum_{p \in P} f^{pm} = N^m, \ orall m \in M$
 $f^{pm} \ge 0, \ orall m \in M, \ orall p \in P$

where $U^m = \max_{p \in P} (U^{pm}) > 0$; f^{pm} is the number of drivers of class *m* choosing path *p*; N^m is the total number of drivers of class m.

	Equilibrium with neo-classical labor supply										
Start time	End time	Work hours (hr)	Rest hours (hr)	Revenue (\$)	Cost (\$)	Profit (\$)	Path flow(veh)				
lass 1											
15	1	9	1	317.7	210.3	107.4	1182				
1	9	8	0	286.5	179.1	107.4	818				
lass 2											
1	7	6	0	214.4	149.1	65.3	49				
7	12	5	0	176.4	111.1	65.3	546				
10	22	5	7	183.8	118.5	65.3	380				
10	20	5	5	181.8	116.5	65.3	337				
6	12	5	1	177.6	112.3	65.3	125				
10	22	5	7	183.8	118.5	65.3	66				
7	15	5	3	179.6	114.3	65.3	497				
lass 3							i i				
7	17	9	1	317.7	210.3	107.4	268				
9	19	9	1	317.7	210.3	107.4	248				
1	9	8	0	286.5	179.1	107.4	266				
8	18	9	1	317.7	210.3	107.4	289				
7	20	6	7	218.7	111.3	107.4	930				
lass 4											
7	12	5	0	176.4	102.1	74.3	345				
7	14	5	2	178.6	104.3	74.3	755				
6	11	5	0	177.0	102.7	74.3	110				
9	22	5	8	184.8	110.5	74.3	302				
10	22	5	7	183.6	109.3	74.3	488				

time	End time	Work hours (hr)	Rest hours (hr)	Revenue (\$)	Cost (\$)	Utility (\$)	Path flow(veh)
						1	
5	1	9	1	293.0	210.3	281.3	1294
l	9	8	0	267.0	179.1	281.3	706
3	20	5	7	174.3	118.3	350.9	1482
7	12	5	0	168.3	111.1	350.9	518
7	17	9	1	293.0	210.3	281.3	840
l	9	8	0	267.0	179.1	281.3	547
3	17	9	1	293.0	210.3	281.3	613
							i
3	20	5	7	174.3	109.3	359.9	210
7	22	5	10	177.0	112.5	359.9	381
5	22	5	11	178.1	113.9	359.9	41
7	15	5	3	171.1	105.5	359.9	488
7	22	5	10	177.0	112.5	359.9	631
7	22	5	10	177.0	112.5	359.9	249

To facilitate the presentation, we assume the neo-classical labor supply.

3.1 Equilibrium outcomes

2. Tendencies of waiting and searching times are opposite each other.

1.Surge pricing v.s. optimal static pricing; 2.Platoform and drivers are better-off; 3.Customers are worse-off in highly surged periods.

3.2 Commission cap regulation

$$\max_{\boldsymbol{\pi}, \boldsymbol{\lambda}, \mathbf{f}, \boldsymbol{\gamma} > \mathbf{0}, \hat{\boldsymbol{\eta}} \ge \mathbf{0}, \mathbf{N} \ge \mathbf{0}} \hat{J} = \sum_{b \in A_{1}} \hat{\eta}_{b} Q_{b}$$

s.t.
$$G(\boldsymbol{\pi}, \boldsymbol{\lambda}, \mathbf{f} \mid \boldsymbol{\gamma}, \hat{\boldsymbol{\eta}}, \mathbf{N}) = 0$$
$$\boldsymbol{\lambda} \ge \boldsymbol{\pi}_{\mathbf{R}}$$
$$\hat{\eta}_{b} \le \bar{\boldsymbol{\eta}}, \ \forall b \in A_{1}$$

where $\pi_{\mathbf{R}}$, $\overline{\eta}$ are respectively the reservation value of drivers' profit and the cap of the commission charged by the platform per trip

