# UTERSITY of **FIORIDA** The Foundation for The Gator Nation

# **Cost-effective and Eco-friendly Plug-In Hybrid Electric Vehicle Charging Management**

# Eleftheria (Ria) Kontou PhD, University of Florida, <u>ekontou@ufl.edu;</u>



INTRODUCTION

minimize drivers cost of recharging

## **RESEARCH MOTIVATION**

Zhang and Markel (2016)

### **Centralized PHEV charging control benefits**

Optimized PHEV charging control can help towards:

- control demand surge
- utility grid reliability
- control emissions from recharging

### This study explores two optimal PHEV charging management schemes:

- 1. Cost-effective: minimize PHEV drivers cost from daily driving • drivers benefit, take advantage of hourly variation of elec. prices
- 2. Eco-friendly: minimize PHEV emissions from daily PHEV driving
- min. externalities due to substantial difference between marginal electricity prices and hourly emission factors of electricity generation

# CHARGING MANAGEMENT STRATEGIES

### **Cost-effective charging management**

- minimize sum of cost of daily PHEV operation
  - cost of charging PHEV
  - cost of operating PHEV in charge-sustaining mode (gas) consumption)

### **Eco-friendly charging management**

- minimize emissions from daily PHEV operation
  - emissions from electricity generation realized while charging tailpipe emissions from charge-sustaining PHEV operation

# Yafeng Yin PhD, University of Florida; Ying-en Ge PhD, Shanghai Maritime University

|                             |                            | OPTIN                                                                            | <b>IIZATION FRAM</b>                                 |  |  |  |  |
|-----------------------------|----------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|--|
|                             | Mixed i                    | nteger programming:                                                              | 2 schemes – 2 obj. fur                               |  |  |  |  |
|                             | Determi                    | ine optimal hourly chai                                                          | rging profiles and powe                              |  |  |  |  |
| tion                        | Cost-effective scheme obj. |                                                                                  |                                                      |  |  |  |  |
|                             | min                        | $z1 = \sum_{t} \sum_{i} \left( p_e^t \cdot n_e \cdot r_i^t \right)$              | $+ p_{g_i}/n_g \cdot d_{cs_i}^t \Big) \Big\} $ Minim |  |  |  |  |
|                             | Eco-frie                   | endly scheme obj.                                                                |                                                      |  |  |  |  |
|                             | min                        | $z2 = \sum \sum \zeta (v_e^t \cdot n_e \cdot r_i^t)$                             |                                                      |  |  |  |  |
| iability)                   | s.t.                       | $s_{i}^{t+1} = s_{i}^{t} + r_{i}^{t+1} - d_{CD}$                                 | $t+1$ , $\forall i, t$ ]                             |  |  |  |  |
|                             |                            | $S^{-} \leq s_{i}^{t}, \forall i, t$ $s_{i}^{t} \leq S^{+}, \forall i, t$        | constraints trac                                     |  |  |  |  |
| V)<br>Engine<br>Controller  |                            | $r_i^t = P_i^t \cdot \left( l_i^t \cdot \frac{p_i^t}{n_e} \right), \forall i, t$ | <pre>} kWh charged b level</pre>                     |  |  |  |  |
| Controller                  |                            | $d_{CD_i}^t + d_{CS_i}^t = d_i^t, \forall i, t$                                  |                                                      |  |  |  |  |
|                             |                            | $d_{CS_i}^t \leq d_i^t \cdot (1 - a_i^t), \forall i,$                            | t electricity-powe                                   |  |  |  |  |
| Electric                    |                            | $a_i^t \ge \frac{s_i^t - S^-}{S^+ - S^-}, \forall i, t$                          | equations                                            |  |  |  |  |
| elling PHEV specs           |                            | $\sum_{i} p_{i}^{t} \leq C^{t}$ , $\forall t$                                    | <pre>J upper bound of<br/>(charging availage)</pre>  |  |  |  |  |
| Chevy Volt                  |                            | $d_{CS_{ii}}^t, d_{CD_{ii}}^t \ge 0, \forall i, t$                               |                                                      |  |  |  |  |
| [24, 33]                    |                            | $p_i^t \ge 0, p_i^t \le v_i^t, \forall i, t$                                     | - non-negativity                                     |  |  |  |  |
| Combined<br>106             |                            | $a_i^t \in \{0,1\}, \forall i, t$                                                |                                                      |  |  |  |  |
| Department of Energy (2016) |                            |                                                                                  | DATACETC                                             |  |  |  |  |

#### **Plug-in hybrid vehicle & charging characteristics**

| Table 2 V              | /ehicle a        | Department of Energy (201 |                              |                      |                             |                                       |                              |  |
|------------------------|------------------|---------------------------|------------------------------|----------------------|-----------------------------|---------------------------------------|------------------------------|--|
| Vehicle Specifications |                  |                           |                              |                      |                             |                                       |                              |  |
| Туре                   | Mod              | lel                       | Battery<br>Capacity<br>(kWh) | Max SOC<br>(mi)      | Min SOC<br>(mi)             | Electricity<br>Efficiency<br>(kWh/mi) | Gasoline<br>Economy<br>(mpg) |  |
| Base:PHEV-             | -50 Chev<br>Volt | vrolet<br>2016            | 18.4                         | 53                   | 10.6                        | 0.3                                   | 42                           |  |
| Sc1:PHEV-1             | 10               |                           | 6.7                          | 6                    | 0                           | same                                  | same                         |  |
| Sc2:PHEV-2             | 20               |                           | 7.6                          | 19                   | 6                           | same                                  | same                         |  |
| <b>Charging</b> C      | Characteris      | tics                      |                              |                      |                             |                                       |                              |  |
| Destination            | Type of charge   | A                         | C Input                      | Charge rate<br>(kWh) | Charge rate<br>(avg. miles) |                                       |                              |  |
| Home                   | Level 1          | 12                        | 0 V/ 10 A                    | 1.2                  | 4                           |                                       |                              |  |
| Work                   | Level 2          | 24                        | 0 V/ 40 A                    | 7.2                  | 24                          |                                       |                              |  |

19.2

64

from Graff Zivin et al. (2014)

**Spatial & hourly variability of marginal** electricity generation costs (\$/kWh) & emission factors (kgCO2-eq/kWh)

Fig. 3 Electricity costs and emissions factors

208 V/ 80 A

Level 2





### **IEWORK**

- nctions, same set of constraints Constraints enhanced and modified from Sioshansi (2012) er loads  $(p_i^t, d_{CD_i}^t, a_i^t)$
- mize sum of operational costs charging cost (electricity generation) gasoline consumption cost
- mize sum of monetized emissions from electricity generation for charging from gas-fueled trip portion (tailpipe)
- cking PHEV battery state-of-charge
- based on charging availability and
- ered and gas fueled distance
- electricity drawn from the grid ability and level constraint)
- & integrality constraints

#### **Optimal charging profiles under cost-effective and eco-friendly schemes**

Fig. 6 Optimal charging profiles percentages resulting from the cost-effective and ecofriendly charging management schemes



#### Key findings

- a) avg. charging energy 8pm-5am 1.2kWh
- b) spikes during day time (workplace charge)
- c) NPCC, SERC, SPP, WECC similar load trends (both schemes)
- d) FRCC and TRE shifted eco-friendly load later in the afternoon

#### Alternate scenario results

Fig. 8 Daily mileage electrification for NER



#### **Cost-effective and eco-friendly controlled charging schemes**

- very different resulting charging profiles
- optimal cost-effective charging occurs early morning hours

#### **Scenarios findings**

- Eco-friendly scheme
- greater load spikes during the day
- impacted by absence of public charging
- Cost-effective scheme

workplace charge absence leads to increasing charging at night Charging control more cost-effective and environmentally friendly when range increases.





## RESULTS



#### Diverse range impact on daily electrified VMT, under 2 control charging schemes • Workplace & public charging availability impact on % of vehicles charging per hour

20

15

10 15

Time of day (hr)

10

Time of day (hr)

| C regions             | Fig. 9 Optimal charging profiles % difference for the WECC region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PHEV-50<br>-10<br>-20 | a. Cost-efficient Charging Management (WECC)<br>home-charging only<br>only home- and workplace-charging<br>only home- and workp |
| ]                     | b. Eco-friendly Charging Management (WECC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                       | 1 5 10 15 20 24<br>Time of day (hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

## CONCLUSIONS

optimal eco-friendly charging in the afternoon and evening