An Analysis of the Time-of-day Choices of the Elderly for Non work Travel

Population is aging rapidly in the US, According to the US Census Bureau, elderly constituted 14.5% of the US population (46.2 million) in 2014. This population by year 2060 is projected to reach more than double their size in 2014. It is also predicted that old people in the US will represent 19.7% of the population by year 2030 .

Worsening physical conditions associated aging can restrict mobility for the elderly population which may further exacerbate the growing population segment. Therefore, studying transportation of aging population is such a timely and crucial topic. On the light of that, this study investigates time-of-day choices for the elderly as an important aspect of their travel behavior which has not received as much attention as other aspects. Here "elderly" is referred to people with 65 years of age and above.

Background \& Objectives

Past research on time-of-day of travel for the elderly has been primarily limited to data descriptive analysis. In this regard, time-of day patterns have been analyzed and compared for different age groups (within elderly as well as elderly versus other cohorts) and/or different trip purposes. Generally, it has been found that elderly tend to schedule their trips during mid-day, away from peak periods. Also, past stuipes have vary by age and trip purpose.

Various modeling frameworks have been used for modeling time-of-day choices in general from simply use of fixed factors to more sophisticated methods. One of those methods is hazard duration modeling which treats time-of-day as a continuous choice, and has several advantages over discrete choice and fixed factor methods.

This study attempts to fill up the gap in knowledge in two different ways. First, it highlights nuances of elderly travel behavior in relation to other cohorts, distinguished by work status. Thereby, one can investigate the extent to which time-of-day behavior of the elderly is similar to non-works. Second, the study uses continuous choice modeling the elderly This approach allows for smunlo is approach allows for several factors, beyond simply age on time of-day choices, and can also help predicting time-of-day profiles.

Data Exploratory Analysis

This study uses 2009 NHTS Florida Add-on dataset consisting of 37,824 respondents, of which 11,354 are 65 years old or above, and 139,425 trip records, of which 38,931 are made by the elderly. Data exploratory analysis is conducted to investigate the nuances of travel behavior of the elderly compared to the middle-aged, in particular with respect to their time-of-day choices. The start-time-of-trip profiles provided here correspond to the top four trip purposes of the elderly - shopping, social/recreational, meal and medical trips - separated by weekday versus weekend trips (A and B correspond to weekday and weekends, respectively). The elderly are differentiated by age ($65-75$ and $75+$), and the middle-aged by work status.

Overall, it can be said that work status more than age affect individual's time-of-day choices, since on weekends all the groups behave closely whereas on weekends, time-of-day groups behave closely whereas on weekends, time-of-day
patterns of the works are distinctly different for all the four trip purposes.

To develop the models, the trip record corresponding to those four trip purposes were extracted. Next, a total of 1,145 trip records that had missing information on at least one of the variables of interest were deleted, leaving 18,586 records in the sample for developing the models. An exception is income for which the missing records were not deleted, rather considered as a separate category. Attempt was made to test some contextual variables such as Medical Condition (shows whether traveler has any medical condrions to having a relatively high share amo the eldely poplation shan the elderly population.

Two continuous choice modeling frameworks are used: linear regression and Cox regression, which produced consistent results in terms of sign and relative magnitude of the coefficients. The table lists the variables in the final models. The symbol indicates that the increase (or existence) of the variable is associated with an earlier start of the trip. The size of the symbo for categorical variables imply the magnitude of the coefficient. The definition of variables are listed below.

Age of hie person
Person is male
Pesmen Pesson is male worker
Less han high school graduate Less han high school grax
High shool radiate
Some collegeg degree
 Number of divers in houss
lon unimer of chives
Housing unit owned houschold Live Alone ${ }_{5}^{\text {Live Alone }}$ Lowinc
MDIINC
MISINC
Utrannize4
UUtansize5
HTPPoppen
 day Tip is son Fi Summary \& Conclusion

The study tries to portray travel behavior of the elderly with regard to their time-of-day choices for most common trip purposes, using 2009 NHTS Florida Add-on, and continuous choice modeling framework. The data exploratory analysis indicated generally close time-of-day trip patterns for the elderly and nonworkers. Furthermore, the models, developed separately for each trip purpose, found correlations between time-of-day and several variables categorized to four groups including personal characteristics such as age, educational level and employment status, household socio-demographics such as home ownership and income level, urbat form such as size of urban area fivity duration and trip distance.

The future research may address the limitations of this study in a few different ways. First, the current methodology does not allow for capturing time-varying impact of the covariates. To address this issue, non proportional hazard duration modeling framework can be used in lieu of Cox regression. Alternatively, by hazard rate in the modeling frameworks used over the other. Such recommendation can be made by conducting a predictive assessment for the two methods and comparing the results. Finally, no intuitive interpretatio could be found for correlation of some of the socio-demographic variables (e.g. education) in the models with time-of-day. It is speculated that these variables may be proxy of some urban form variables. Examining these potential spatial correlations may help interpreting the model results more concretely.

