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INTRODUCTION

Although most multiclass traffic assignment models can capture the 

interaction between trucks and passenger cars, they assume that the 

Passenger Car Equivalent (PCE) value of truck is only flow-

independent. However a large body of studies and the Highway 

Capacity Manual show that PCE values for trucks are a function of 

geometric parameters and truck flow

OBJECTIVES

• Develop fitting functions for flow-dependent PCEs of trucks based 

on the latest Highway Capacity Manual (HCM) 6th edition

• Formulate a multiclass traffic assignment model to describe the flow 

distribution of trucks and passenger cars across a general network

• Explore the properties of the proposed traffic assignment model

RELATIONSHIP BETWEEN PCEs AND PERCENT OF TRUCKS

It was found that the Power Function is able to describe the

relationship between the percent of trucks and the PCE well, as

reflected by the R^2 coefficients of determination pretty close to 1

• We proposed the use of power functions fitted to the discrete PCE

values presented in the latest HCM (6th edition)

• The equilibrium link flow distribution for the VI formulation was

proved to exist but may not be unique, impacting the social cost

• Taking the congestion pricing design problem as an example, several

approaches were provided to deal with such impact

• We recommend that the additional impact of truck flow on link and

signalized intersection capacity proposed by the HCM 6th edition

VARIATIONAL INEQUALITY MODEL
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NON-UNIQUENESS PROPERTY

The cost increases when truck flow disperses

Figure 1. PCE of trucks for 0.875 mi grades in multilane segments

Figure 5. Sioux Falls network

Figure 2. Modified BPR Function

Figure 3. A Toy Network Figure 4. Social costs for different equilibrium patterns

Let 𝝉 be a given vector of tolls. Solving the following problem provides an

estimate of the largest system delay, Ψ𝑚𝑎𝑥(𝝉), induced by 𝝉:

Ψ𝑚𝑎𝑥 𝝉 = max
𝒙,𝒗,𝝆
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1.Minimize the largest social cost: 𝝉∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 Ψ𝑚𝑎𝑥 𝝉 : 𝝉 ∈ Γ

2.Minimize the smallest social cost: 𝝉∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 Ψ𝑚𝑖𝑛 𝝉 : 𝝉 ∈ Γ

3.Minimize the “most-likely” social cost:

•𝝉∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 ቄσ𝑎∈𝐴 𝑡𝑎 𝑣𝑎
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NETWORK EQUILIBRIUM CONDITION

The network equilibrium conditions (1)-(6) are equivalent to finding 𝒙∗ ∈ Λ that solves the following VI:
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where Λ = 𝒙 , satisfying constraints (1) and (2).
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VARIANCE OF LINK FLOW DISTRIBUTION

Figure 6. Variance of aggregate flows in PCE

Figure 7. Variance of truck flows

76 LINKS, 24 NODES

• Grades set to 3.5%

• PCEs from 2.2-3.4

COMPARISON

• Constant PCEs

• Variable PCEs

Discrepancies as large as 12.8%
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EXAMPLE DELAY FUNCTION, LEVEL TERRAIN

Coefficients for each 

combination of grade 

and length
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